蔣季伸副教授
電子郵箱:jiangjsh3@mail.sysu.edu.cn
研究領(lǐng)域:先進(jìn)耐事故燃料包殼涂層高溫強(qiáng)度及失效機(jī)理;高溫材料本構(gòu)模型及數(shù)理建模;微納尺度力學(xué)原位測(cè)試技術(shù);高溫材料與結(jié)構(gòu)強(qiáng)度、疲勞、蠕變及斷裂。
一、基本信息
蔣季伸,副教授(碩士生導(dǎo)師)
郵箱:jiangjsh3@mail.sysu.edu.cn
學(xué)科方向:核材料與力學(xué)
研究領(lǐng)域:
先進(jìn)耐事故燃料包殼涂層高溫強(qiáng)度及失效機(jī)理;
高溫材料本構(gòu)模型及數(shù)理建模;
微納尺度力學(xué)原位測(cè)試技術(shù);
高溫材料與結(jié)構(gòu)強(qiáng)度、疲勞、蠕變及斷裂。
二、教育背景
2013/09~2019/03 上海交通大學(xué),機(jī)械與動(dòng)力工程學(xué)院,動(dòng)力工程及工程熱物理,工學(xué)博士;
2009/09~2013/06 大連理工大學(xué),能源與動(dòng)力工程學(xué)院,熱能與動(dòng)力工程,工學(xué)學(xué)士。
三、工作經(jīng)歷
2022/04~至今中山大學(xué),中法核工程與技術(shù)學(xué)院,百人計(jì)劃副教授;
2019/03~2022/03 中山大學(xué),中法核工程與技術(shù)學(xué)院,博士后。
四、科研項(xiàng)目
- 國(guó)家自然科學(xué)基金青年項(xiàng)目,氣膜冷卻孔自由邊效應(yīng)對(duì)熱障涂層界面開(kāi)裂影響機(jī)制研究,在研,主持。
- 國(guó)家自然科學(xué)基金聯(lián)合基金重點(diǎn)項(xiàng)目,涂層鋯合金的高溫力學(xué)性能與失效機(jī)理研究,在研,子課題主持。
- 廣東省自然科學(xué)基金面上項(xiàng)目,組織調(diào)控對(duì)耐事故Cr涂層高溫力學(xué)性能及失效行為的影響研究,在研,主持。
- 動(dòng)力機(jī)械與工程教育部重點(diǎn)實(shí)驗(yàn)室,摻氫燃?xì)廨啓C(jī)燃燒室壁面多孔氣膜冷卻的流/熱/固耦合特性及機(jī)理研究,在研,主持。
- 中國(guó)博士后基金站前特別資助項(xiàng)目(首批),高溫氧化對(duì)核燃料包殼ATF涂層力學(xué)失效機(jī)理影響的研究,結(jié)題,主持。
- 中國(guó)博士后基金面上項(xiàng)目,熱循環(huán)載荷下冷卻孔結(jié)構(gòu)對(duì)熱障涂層界面失效影響的研究,結(jié)題,主持。
- 中廣核研究院有限公司委托項(xiàng)目,ATF燃料棒束失水后及再淹沒(méi)階段特性研究實(shí)驗(yàn)采購(gòu),190萬(wàn)元,在研,主持。
- 高校基本科研業(yè)務(wù)費(fèi)-青年教師培育項(xiàng)目,高溫拉伸載荷下ATF涂層的表/界面裂紋競(jìng)爭(zhēng)機(jī)制研究,結(jié)題,主持。
- 廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究重大科技專項(xiàng),基于材料基因工程的先進(jìn)能源裝備材料服役性能評(píng)價(jià)技術(shù)及其應(yīng)用研究,在研,子課題第二參與人。
- 中央軍委裝備發(fā)展部項(xiàng)目裝備預(yù)先研究項(xiàng)目,**的變形失效機(jī)理與力學(xué)性能原位研究,結(jié)題,第一參與人。
五、學(xué)術(shù)論文
[1] Jiang J, Ma X, Wang B. Positive or negative role of preoxidation in the crack arresting of Cr coating for accident tolerant fuel cladding[J]. Corrosion Science, 2021, 193: 109870.
[2] Jiang J, Du M, Pan Z, et al. Effects of oxidation and inter-diffusion on the fracture mechanisms of Cr-coated Zry-4 alloys: An in situ three-point bending study[J]. Materials & Design, 2021, 212: 110168.
[3] Jiang J, Du M, Ma X. On the microstructures and cracking modes of Cr-coated Zr-4 alloys oxidized and vacuum-annealed at 1000° C[J]. Journal of Alloys and Compounds, 2022, 908: 164610.
[4] Jiang J, Zhai H, Du M, et al. Temperature-dependent deformation and cracking behavior in Cr coating for accident tolerant fuel cladding: An in situ SEM study[J]. Surface and Coatings Technology, 2021, 427: 127815.
[5] Jiang J, Yuan M, Du M, et al. On the crack propagation and fracture properties of Cr-coated Zr-4 alloys for accident-tolerant fuel cladding: In situ three-point bending test and cohesive zone modeling[J]. Surface and Coatings Technology, 2021, 427: 127810.
[6] Jiang J S, Wang D Q, Du M Y, et al. Interdiffusion behavior between Cr and Zr and its effect on the microcracking behavior in the Cr-coated Zr-4 alloy[J]. Nuclear Science and Techniques, 2021, 32(12): 1-12.
[7] X.F. Ma, H.L. Zhai, F.Q. Meng, J.S. Jiang*, et al. Benefit or harm of accident tolerant coatings on the low-cycle fatigue properties of Zr-4 cladding alloy- in-situ studies at 400°C. J. Nucl. Mater., 2021, 545:152651.
[8] J.S. Jiang, D.K. Zhan, J.N. Lv, et al. Comparative study on the tensile cracking behavior of CrN and Cr coatings for accident-tolerant fuel claddings. Surf. Coat. Tech., 2021, 409:126812.
[9] X.F. Ma, W.J. Zhang, Z.J. Chen, D.Yang, J.S. Jiang*, et al. Elastoplastic Deformation and Fracture Behavior of Cr-Coated Zr-4 Alloys for Accident Tolerant Fuel Claddings. Front. Energy Res., 2021, 9:655176.
[10]J.S. Jiang, L. Zuo, X.F. Ma*, et al. In-situ study on the tensile behavior of Cr-coated zircaloy for accident tolerant fuel claddings. Surf. Coat. Tech., 2020, 394: 125747.
[11] X.F. Ma, H.L. Zhai, J.S. Jiang*, et al. Fatigue short crack propagation behavior of selective laser melted Inconel 718 alloy by in-situ SEM study Influence of orientation and temperature. Int. J. Fatigue, 2020, 139:105739.
[12]J.S. Jiang, D. Wu, W.Z. Wang, et al. Fracture behavior of TBCs with cooling hole structure under cyclic thermal loadings. Ceram. Int., 2020, 46(3): 3644-3654.
[13]J.S. Jiang, X.F. Ma*, B. Wang. Stress analysis of the thermal barrier coating system near a cooling hole considering the free-edge effect. Ceram. Int., 2020, 46(1): 331-342.
[14]J.S. Jiang, L.X. Jiang, W.Z. Wang*, et al. Numerical stress analysis of the TBC-film cooling system under operating conditions considering the effects of thermal gradient and TGO growth. Surf. Coat. Tech., 2019, 357: 433-444.
[15]J.S. Jiang, W.Z. Wang*, X.F. Zhao, et al. Numerical analyses of the residual stress and top coat cracking behavior in thermal barrier coatings under cyclic thermal loading. Eng. Fract. Mech., 2018, 196: 191-205.
[16]J.S. Jiang, Z.H. Zou, W.Z. Wang*, et al. Effect of internal oxidation on the interfacial morphology and residual stress in air plasma sprayed thermal barrier coatings. Surf. Coat. Tech., 2018, 334: 215-226.
[17]J.S. Jiang, B.Q. Xu, W.Z. Wang*, et al. Finite element analysis of the effects of thermally grown oxide thickness and interface asperity on the cracking behavior between the thermally grown oxide and the bond coat. J. Eng. Gas Turb. Power, 2017, 139(2): 022504.
[18]J.S. Jiang, W.Z. Wang*, N.L. Zhao, et al. Application of a creep-damage constitutive model for the rotor of a 1000 MW ultrasupercritical steam turbine. J. Eng. Gas Turb. Power, 2016, 138(2): 022606.
[19]J.S. Jiang, J.D. Yang, L. Xiao, et al. Numerical analysis of the impact effect of foreign bodies on a steam strainer in a steam turbine valve. J. Mech. Sci. Tech., 2018, 32(1): 405-413.
[20]J.S. Jiang, Z.W. Cai, W.Z. Wang*, et al. Finite element analysis of thermal-mechanical behavior in the thermal barrier coatings with cooling hole structure. ASME Turbo Expo, 2017, V006T24A011.
[21] Jin D, Jiang J, Di Z, et al. Effect of interface undulation on the high temperature oxidation behaviors of grit-blasted and coated zircaloy in pressurized water[J]. Corrosion Science, 2021, 192: 109839.
[22] C. Lin, J.S. Jiang, H. Ruan, et al. Investigation of non-uniform oxidation based on a mechanochemical phase field model with nonlinear reaction kinetics and large inelastic deformation. npj Materials Degradation, 2023, 7.
[23] H. Zhai, J.S. Jiang, W. Zhang, et al. Microstructure sensitivity of the low cycle fatigue crack initiation mechanisms for the Al0.3CoCrFeNi high entropy alloy: in-situ SEM study and crystal plasticity simulation, Int. J. Fatigue, 2023, 107871.
[24] H. Zhai, W. Zhang, J.S. Jiang, et al. Microstructure relevant fatigue short crack propagation behavior of Al0.3CoCrFeNi high entropy alloy: in-situ SEM study, Int. J. Fatigue, 2023, 107869.
[25] Z.W. Cai, J.S. Jiang, W.Z. Wang*, et al. CMAS penetration-induced cracking behavior in the ceramic top coat of APS TBCs. Ceram. Int., 2019, 45(11): 14366-14375.
[26] X.F. Ma*, J.S. Jiang, W.J. Zhang, et al. Effect of Local Recrystallized Grains on the Low Cycle Fatigue Behavior of a Nickel-Based Single Crystal Superalloy. Crystals, 2019, 9(6): 312.
[27] Z. pan, M. Yuan, J.S. Jiang*, et al. On the tensile fracture behavior of Cr coating for ATF cladding considering the effect of pre-oxidation. ICCEAM, 2021.
[28] M. Yuan, Z. Pan, J.S. Jiang*, et al. Numerical modeling of cracking behavior in Cr coating for ATF cladding under three-point bending. ICCEAM, 2021.
[29] Du M, Wang C, Jiang J*, et al. Three-point bending study on the microscopic fracture behavior of pre-oxidized Cr-coated Zr-4 alloys[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 2076(1): 012051.
[30] Zhai H, Zhang S, Yang D, Jiang J*, et al. Effect of heat treatment on the microstructure and hardness of Al0. 3CoCrFeNi high entropy alloy[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 2076(1): 012085.
[31] Hao Yang, J.S. Jiang, Z.Z. Wang, et al. Fatigue Fracture Mechanism of a Nickel-Based Single Crystal Superalloy with Partially Recrystallized Grains at 550 °C by In Situ SEM Studies. Metals, 2020, 10:1007.
[32] B.Q. Xu, J.S. Jiang, X.F. Zhao*, et al. Time-dependent spalling behavior of thermally grown oxide induced by room temperature interfacial deformation. Surf. Coat. Tech, 2018, 334: 164-172.
[33] L. Song, B. Huang, J. Li, X. Ma, M. Liu, J.S. Jiang, Y.Y. Hu. Effects of ion irradiation on Cr, CrN, and TiAlCrN coated Zircaloy-4 for accident tolerant fuel claddings. Ann. Nucl. Energy, 2021, 156:108206.
[34] Z.G. Zheng, Y.B. Peng, J.S. Jiang, et al. In-situ study of the fracture behavior of SiCf-SiC composite material under three-point bending. IOP Conf. Series: Earth and Environmental Science, 2021, 639:012020.
[35] N.L. Zhao, W.Z. Wang*, J.S. Jiang, et al. Study of creep-fatigue behavior in a 1000 MW rotor using a phenomenological lifetime model. J. Mech. Sci. Tech., 2017, 31(2): 605-614.
[36] R.A. Adjei, W.Z. Wang*, J.S. Jiang, et al. Numerical investigation of unsteady shock wave motion in a transonic centrifugal compressor. ASME Turbo Expo, 2017, V008T26A012.
[37] 蔣凌欣, 蔣季伸, 王煒哲*. 體積輻射換熱對(duì)熱障涂層-氣膜冷卻系統(tǒng)中熱障涂層溫度場(chǎng)的影響. 動(dòng)力工程學(xué)報(bào), 2019, 06:441-446.
六、指導(dǎo)和培養(yǎng)學(xué)生
- 2018級(jí)本科畢設(shè)(張蓉,韓丹丹,溫俊如,高建洲),獲大學(xué)生創(chuàng)新訓(xùn)練計(jì)劃國(guó)家級(jí)項(xiàng)目,獲個(gè)人優(yōu)秀畢業(yè)論文。
- 2017級(jí)本科畢設(shè)(潘子彥,袁銘鐸,鄒鎮(zhèn)宇,張偉健),獲大學(xué)生創(chuàng)新訓(xùn)練計(jì)劃校級(jí)項(xiàng)目,獲個(gè)人優(yōu)秀畢業(yè)論文,優(yōu)秀團(tuán)隊(duì)論文,優(yōu)秀畢業(yè)設(shè)計(jì)海報(bào)。
- 2016級(jí)本科畢設(shè)(盧凌風(fēng),梅漢青,涂家駿),獲大學(xué)生創(chuàng)新訓(xùn)練計(jì)劃國(guó)家級(jí)項(xiàng)目。














中法核工程與技術(shù)學(xué)院
中法核工程與技術(shù)學(xué)院