banner

馬顯鋒副院長(zhǎng)/教授

研究領(lǐng)域:先進(jìn)能源裝備和材料在極端環(huán)境(高溫、鉛鉍腐蝕、輻照、應(yīng)力)的服役性能評(píng)價(jià);先進(jìn)核能材料的研發(fā):耐事故ATF包殼、耐鉛鉍腐蝕合金、高熵合金、微納涂層;小型模塊堆、核電寶與核動(dòng)力系統(tǒng)的設(shè)計(jì)與材料方案;數(shù)值反應(yīng)堆“熱-力-材料-輻照”模擬與安全評(píng)估;材料的輻照損傷“納-介-微-宏觀”多尺度模擬 (MD, DD, 晶體塑性, 有限元);微納尺度力學(xué)的原位測(cè)試技術(shù)、基于微小試樣測(cè)試的性能微損評(píng)價(jià);高溫結(jié)構(gòu)的強(qiáng)度、疲勞、蠕變與斷裂性能:高溫力學(xué)測(cè)試、理論模型;增材制造/修復(fù)等先進(jìn)制造工藝、材料無(wú)損檢測(cè)與健康監(jiān)測(cè)

基本情況

馬顯鋒,教授,博士生導(dǎo)師。

中山大學(xué)中法核工程與技術(shù)學(xué)院       副院長(zhǎng)
(分管科研工作、學(xué)科建設(shè)、研究生招生培養(yǎng))

中山大學(xué)核能材料與服役安全中心     主  任

核燃料循環(huán)與材料學(xué)科               學(xué)科帶頭人

核材料與力學(xué)教研室                   教研室主任

核材料研發(fā)與評(píng)價(jià)平臺(tái)               平臺(tái)負(fù)責(zé)人

核材料與力學(xué)團(tuán)隊(duì)                      團(tuán)隊(duì)負(fù)責(zé)人

郵箱:maxf6@mail.sysu.edu.cn

 

教育背景

2005 ~ 2010  清華大學(xué)  工程力學(xué)系   工學(xué)博士
2001 ~ 2005  清華大學(xué)  工程力學(xué)系   工學(xué)學(xué)士

 

工作經(jīng)歷

2021 ~  至今   中山大學(xué) 中法核工程與技術(shù)學(xué)院       教   授,中山大學(xué)“逸仙學(xué)者”

2015 ~ 2021   中山大學(xué) 中法核工程與技術(shù)學(xué)院     “百人計(jì)劃”副教授

2010 ~ 2015   美國(guó)密西根大學(xué)  工學(xué)院     Research Fellow (與Allison院士合作,TMS Fellow, 北美材料基因工程發(fā)起人之一)

 

教學(xué)經(jīng)歷

2015 ~ 至今  中山大學(xué)   工程力學(xué)、核材料學(xué)基礎(chǔ)、有限元方法本科生課程4門

2015 ~ 至今  中山大學(xué)   核材料學(xué)、先進(jìn)核燃料與材料、核結(jié)構(gòu)力學(xué)與強(qiáng)度理論等相關(guān)碩士生、博士生課程6門

2011 ~ 2014  美國(guó)密西根大學(xué) “有限元軟件求解力學(xué)問(wèn)題”講授與上機(jī)指導(dǎo)

2006 ~ 2008  清華大學(xué) 重點(diǎn)專業(yè)課程“工程力學(xué)”助教

 

研究亮點(diǎn)及方向

亮點(diǎn):圍繞核電、能源動(dòng)力領(lǐng)域的先進(jìn)裝備與關(guān)鍵材料需求,開(kāi)展裝備安全分析、先進(jìn)材料研制、原位多物理測(cè)試、多尺度材料-力學(xué)研究,研發(fā)了多種國(guó)際先進(jìn)耐高溫力學(xué)輻照嚴(yán)苛環(huán)境的材料,發(fā)展了關(guān)鍵能源裝備的結(jié)構(gòu)設(shè)計(jì)與材料、服役性能評(píng)價(jià)理論、定壽與延壽技術(shù)。獲得2022年廣東省材料研究學(xué)會(huì)青年科技獎(jiǎng)等獎(jiǎng)項(xiàng)。

  • 先進(jìn)能源裝備在極端環(huán)境(高溫、鉛鉍腐蝕、輻照、應(yīng)力)的服役安全與評(píng)價(jià)技術(shù)
  • 先進(jìn)核能材料的研發(fā)耐事故核燃料、鉛鉍快堆耐腐蝕材料高熵合金微納涂層
  • 小型模塊堆、核電寶與核動(dòng)力系統(tǒng)的設(shè)計(jì)與結(jié)構(gòu)材料方案
  • 數(shù)值反應(yīng)堆“熱-力-材料-輻照”模擬與安全評(píng)估
  • 高溫結(jié)構(gòu)完整性、疲勞、蠕變與斷裂性能:高溫力學(xué)測(cè)試、理論模型
  • 增材制造、增材修復(fù)等先進(jìn)制造工藝、先進(jìn)焊接與連接工藝
  • 微納尺度力學(xué)的原位測(cè)試技術(shù)、基于微小試樣測(cè)試的性能無(wú)損/微損評(píng)價(jià)
  • 材料輻照損傷&力學(xué)性能的“納-介-微-宏觀”多尺度模擬預(yù)報(bào)技術(shù) (分子動(dòng)力學(xué), 位錯(cuò)動(dòng)力學(xué), 晶體塑性, 有限元)
  • 基于機(jī)器學(xué)習(xí)的能源系統(tǒng)安全分析、性能預(yù)報(bào);基于機(jī)器學(xué)習(xí)的材料性能預(yù)報(bào)與優(yōu)化

 

科研項(xiàng)目

近五年來(lái),主持國(guó)家級(jí)、省部級(jí)等科研項(xiàng)目和課題10余項(xiàng),承擔(dān)競(jìng)爭(zhēng)性科研項(xiàng)目經(jīng)費(fèi)近2000萬(wàn)元。

  • 課題負(fù)責(zé)人,廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)重大科技專項(xiàng)課題,負(fù)責(zé)“高輻照注量下先進(jìn)能源裝備材料服役行為高通量評(píng)價(jià)技術(shù)”課題,廣東省首批啟動(dòng)10個(gè)重大專項(xiàng)之一,項(xiàng)目總經(jīng)費(fèi)4767萬(wàn)元
  • 項(xiàng)目負(fù)責(zé)人,負(fù)責(zé)國(guó)家自然科學(xué)基金聯(lián)合項(xiàng)目,No. U2032143
  • 項(xiàng)目負(fù)責(zé)人,負(fù)責(zé)國(guó)家自然科學(xué)基金青年項(xiàng)目,No. 11902370
  • 項(xiàng)目負(fù)責(zé)人,入選廣東省“重大人才工程項(xiàng)目”,2021年度
  • 項(xiàng)目負(fù)責(zé)人,入選中山大學(xué)首批“逸仙學(xué)者人才計(jì)劃
  • 項(xiàng)目負(fù)責(zé)人,中山大學(xué)青年創(chuàng)新拔尖人才培養(yǎng)項(xiàng)目,“耐事故核燃料包殼涂層的變形與失效機(jī)理研究
  • 課題負(fù)責(zé)人,廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃,負(fù)責(zé)“高溫合金組織-力學(xué)性能材料基因工程研究”課題
  • 課題負(fù)責(zé)人,廣東省重大科技專項(xiàng)課題,負(fù)責(zé)“先進(jìn)管道材料的環(huán)境力學(xué)性能研究”課題
  • 項(xiàng)目負(fù)責(zé)人,廣東省教育廳青年創(chuàng)新人才項(xiàng)目“先進(jìn)核燃料包殼合金的集成計(jì)算材料工程研究”
  • 項(xiàng)目負(fù)責(zé)人,另承擔(dān)國(guó)家級(jí)項(xiàng)目2項(xiàng),總經(jīng)費(fèi)150萬(wàn)
  • 共同負(fù)責(zé)人,先進(jìn)核燃料技術(shù)攻堅(jiān)項(xiàng)目,“ATF燃料棒束失水后***階段特性研究”,190萬(wàn)元
  • 共同負(fù)責(zé)人,先進(jìn)核燃料技術(shù)攻堅(jiān)項(xiàng)目,“ATF燃料元件失水后***損壞機(jī)理研究”,150萬(wàn)元
  • 作為第一完成人,完成密西根大學(xué)與DoE和福特公司等合作項(xiàng)目“xx合金的熱擠壓成型、再結(jié)晶行為與疲勞性能研究”的主要工作
  • 作為第一完成人,完成密西根大學(xué)- AFRL實(shí)驗(yàn)室合作項(xiàng)目“x合金的集成計(jì)算材料工程(ICME)模型”研究
  • 作為第一完成人,完成“先進(jìn)合金的關(guān)鍵高溫力學(xué)性能研究”相關(guān)國(guó)際科技合作項(xiàng)目4項(xiàng)(2005~ 2010),科研經(jīng)費(fèi)一千萬(wàn)余元

 

學(xué)術(shù)論文

近年來(lái)在本專業(yè)領(lǐng)域SCI/EI期刊上發(fā)表學(xué)術(shù)論文100余篇,部分代表論文如下:

[100] Wang D, Liu S, Xiao C, Ma X*, Sun Y, et al. Corrosion resistance of 15–15Ti and 316Ti austenitic steels as fuel cladding in liquid lead-bismuth eutectic at 550 ℃: The dominant role of grain structure. Corrosion Science, 2023, 218: 111169.

[99] Hu Y, Niu Y, Chen J, Zhou H, Zhou P, Ma X*, et al. High corrosion resistance of twin boundaries in medium-entropy alloy exposed to liquid lead-bismuth eutectic at 500 °C: Mechanism exploration by both experiment and first-principles calculation. Corrosion Science, 2023, 211: 110865.

[98] Zhai HL, Jiang JS, Zhang W, Zhang Q, Ma X*, et al. Microstructure sensitivity of the low cycle fatigue crack initiation mechanisms for the Al0.3CoCrFeNi high entropy alloy: in-situ SEM study and crystal plasticity simulation. International Journal of Fatigue, 2023, 176: 107871.

[97] Zhai HL, Zhang WJ, Jiang JS, Ma X*, et al. Microstructure relevant fatigue short crack propagation behavior of Al0.3CoCrFeNi high entropy alloy: in-situ SEM study. International Journal of Fatigue, 2023, 176: 107869.

[96]Ma X, Zhai HL, Song LG, Zhang WJ, Hu YY*, Zhang Q. In situ study on plastic deformation mechanism of Al0.3CoCrFeNi high-entropy alloys with different microstructures, Materials Science & Engineering A, 2022, 857: 144134.

[95]Ma X, Zhai HL, Meng FQ, Jiang JS*, et al. Benefit or harm of accident tolerant coatings on the low-cycle fatigue properties of Zr-4 cladding alloy: in-situ studies at 400 °C. Journal of Nuclear Materials, 2021, 545: 152651.

[94] Zhu F, Wang D, Wang W, W J, Ma X*, Xie Z, Zhang Z**. Microstructure and mechanical property evolution of He-implanted nanochannel W film under post-annealing. Journal of Nuclear Materials, 2022, 572: 154065.

[93] Hu Y, Niu Y, Zhao Y, Yang W, Ma X*, Li J. Friction stir welding of CoCrNi medium-entropy alloy: Recrystallization behaviour and strengthening mechanism. Materials Science and Engineering A, 2022, doi: 10.1016/j.msea.2022.143575.

[92] Ma L, Wiame F, Chen X, Ma X*. Effect of Nb on the surface composition of FeCrAl alloys after anodic polarization, Materials & Design, 2022, 219: 110728.

[91] Jiang JS, Ma X*, Wang B. Positive or negative role of preoxidation in the crack arresting of Cr coating for accident tolerant fuel cladding. Corrosion Science, 2021 (193) 109870: 1-14.

[90] Hu Y, Fang Z, Peng Y, Yang W, Ma X*, Li J, Zhao Y*, Wang B. Simultaneous enhancement of strength and ductility in friction stir processed 2205 duplex stainless steel with bimodal structure: experiments and crystal plasticity modeling, Science China: Physics, Mechanics & Astronomy,2021,doi: 10.1007/s11433-021-1807-y.

[89] Jiang JS, Du MY, Pan Z, Yuan M, Ma X*, Wang B. Effects of oxidation and inter-diffusion on the fracture mechanisms of Cr-coated Zry-4 alloys: An in situ three-point bending study, Materials & Design, 2021(212), 110168: 1-13.

[88]Ma X, Zhai HL, Zuo L, et al. Fatigue short crack propagation behavior of selective laser melted Inconel 718 alloy by in-situ SEM study: Influence of orientation and temperature. International Journal of Fatigue, 2020(139): 105739.

[87] Hu Y, Yang W, Wang B**,Ma X*, et al. Dynamic recrystallization, Laves phase evolution and mechanical performance of Nb containing FeCrAl alloy joints fabricated by friction stir welding, Materials Science & Engineering A, 2022, doi: 10.1016/j.msea.2022.143575.

[86] Meng CY, Yang L, Wu YW, Dang WA, He XJ*, Ma X*. Study of the oxidation behavior of CrN coating on Zr alloy in air. Journal of Nuclear Materials, 2019, 515, 354-369.

[85] Jiang JS, Yuan MD, Du MY, Ma X*. On the crack propagation and fracture properties of Cr-coated Zr-4 alloys for accident-tolerant fuel cladding: In situ three-point bending test and cohesive zone modeling, Surface & Coatings Technology,2021 (427), 127810: 1-9.

[84] Song LG, Li J, Ma X*, et al. Effects of ion irradiation on Cr, CrN, and TiAlCrN coated Zircaloy-4 for accident tolerant fuel claddings, Annals of Nuclear Energy, 2021, doi:10.1016/j.anucene.2021.108206.

[83]Ma X, Zhang W, Chen Z, Yang D, Jiang J*, et al. Elastoplastic Deformation and Fracture Behavior of Cr-Coated Zr-4 Alloys for Accident Tolerant Fuel Claddings. Frontiers in Energy Research, 2021, 9: 655176. doi: 10.3389/fenrg.2021.655176.

[82] Jiang JS, Zhan DK, Lv JN, Ma X*, et al. Comparative study on the tensile cracking behavior of CrN and Cr coatings for accident-tolerant fuel claddings. Surface & Coating Technology, 2021, 409: 126812: 1-13.

[81] Zhang WJ, Hu YY, Ma X*, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling, International Journal of Fatigue, 2021, 145: 106109: 1-14. 

[80] Rui SS, He ZW, Guo YY, Su Y, Han QN, Ma X*, Shi HJ*. Secondary orientation effects on the low cycle fatigue behaviors of rectangular-sectional Ni-based single crystal superalloys at medium and high temperatures, 2023, 46(9): 3290-3305.

 

技術(shù)發(fā)明專利

近五年獲得中國(guó)發(fā)明和實(shí)用新型專利授權(quán)8項(xiàng),已申請(qǐng)專利多項(xiàng)。

 

獲得獎(jiǎng)勵(lì)

廣東省重大人才工程

廣東省材料研究學(xué)會(huì)青年科技獎(jiǎng)

廣東省教育廳青年科技創(chuàng)新人才

中山大學(xué)“逸仙學(xué)者”

中山大學(xué)“優(yōu)秀共產(chǎn)黨員”

中山大學(xué)中法核學(xué)院教學(xué)競(jìng)賽一等獎(jiǎng)

“核+X”大賽、材料創(chuàng)新大賽等優(yōu)秀指導(dǎo)教師獎(jiǎng)

 

學(xué)術(shù)兼職

-中國(guó)核學(xué)會(huì)輻照效應(yīng)分會(huì)理事

-中國(guó)機(jī)械工程學(xué)會(huì)材料分會(huì)理事

-中國(guó)材料研究學(xué)會(huì)疲勞分會(huì)理事

-中國(guó)反應(yīng)堆物理與核材料專業(yè)委員會(huì)委員

-中國(guó)高溫結(jié)構(gòu)與材料強(qiáng)度委員會(huì)委員

-中國(guó)機(jī)械工程學(xué)會(huì)材料分會(huì)青年委員會(huì)委員

-廣東省力學(xué)學(xué)會(huì)常務(wù)理事、青年工作委員會(huì)副主任

-廣東省材料研究學(xué)會(huì)理事

-國(guó)家級(jí)、省部級(jí)重要科技/人才項(xiàng)目的評(píng)委專家

-作為大會(huì)主席,2022年組織承辦“第十四屆全國(guó)高溫材料及結(jié)構(gòu)強(qiáng)度學(xué)術(shù)會(huì)議

-ICMMME國(guó)際會(huì)議、國(guó)際斷裂力學(xué)(ICF)會(huì)議、全國(guó)疲勞與斷裂大會(huì)、全國(guó)青年疲勞大會(huì)、全國(guó)高溫結(jié)構(gòu)與材料強(qiáng)度會(huì)議等的分會(huì)主席、學(xué)術(shù)委員、特邀報(bào)告人

-核材料與力學(xué)領(lǐng)域30余個(gè)SCI國(guó)際期刊的審稿人:JMST, IJF, Mater Des, Trib Int等

-核工程、材料、力學(xué)領(lǐng)域3個(gè)國(guó)際期刊、2個(gè)國(guó)內(nèi)期刊的編委

-美國(guó)礦物金屬材料學(xué)會(huì)TMS會(huì)員、美國(guó)密西根大學(xué)ICME成員

 

國(guó)際會(huì)議/講座

近年來(lái),受邀在TMS國(guó)際材料大會(huì)、國(guó)際斷裂力學(xué)大會(huì)、耐事故核燃料大會(huì)、全國(guó)疲勞與斷裂大會(huì)、全國(guó)疲勞青年學(xué)術(shù)會(huì)議等國(guó)內(nèi)外大會(huì)做特邀報(bào)告30,包括:

[18]Ma X, Lu L, Meng F, Liu M, Yuan C, Wang B. Integrated particle facility applying to nuclear materials and related studies: recent progress at IFCEN. The 1stconference on integrated particle facility, 2019, Guangzhou, China. (邀請(qǐng)報(bào)告)

[17]Ma X, Wei D, Shi HJ. Review on the high temperature fatigue properties of turbine blade nickel-based superalloys. National Youth Fatigue Congress, 2019, Shenyang, China. (邀請(qǐng)報(bào)告)

[16] Xiong Z, Ma X*, Qi X. Very High Cycle Fatigue Behavior of the 316L Weldment Fabricated by Laser Butt-Welding. ICMMME, 2019, Chengdu, China. (大會(huì)最佳口頭報(bào)告)

[15]Ma X, Wei D, John E. Allison. An ICME tool for titanium alloy based on crystal plasticity modeling. ICMMME, 2019, Chengdu, China. (分會(huì)主席)

[14]Ma X, Shi HJ. Effect of partial recrystallization on the LCF property of PWA1483 single crystal nickel-base superalloy. 4rd National Forum on Materials and Structure Strength & 2st Youngth Comittee of Materials Branch of CSME, 2017, Nanning, China. (邀請(qǐng)報(bào)告)

[13]Ma X, Shi HJ, Gu JL, Li CP, Chen GF, Oliver L. On the low-cycle fatigue fracture behavior of a single crystal nickel-based superalloy with surface recrystallized grains. International Conference of Fracture, 2017, Rhodes island, Greek. (國(guó)際斷裂大會(huì)分會(huì)主席)

[12]Ma X, John E. Allison. An integrated computational materials engineering (ICME) tool for hot extrusion of titanium alloy based on crystal plasticity modeling. 3rd National Forum on Materials and Structure Strength & 1st Youngth Comittee of Materials Branch of CSME, 2016, Shenyang, China. (邀請(qǐng)報(bào)告)

[11]Ma X, Shi HJ. Recent progress on the evaluation of recrystallization effect on the low-cycle fatigue property of turbine blade superalloys. 18th National Conference on Fatigue and Fracture, 2016, Zhengzhou, China. (邀請(qǐng)報(bào)告)

[10] Ma X, Huang Z, Li M, Allison J E. Recrystallization behavior of the magnesium alloy ZE20. TMS conference, 2015, Orlando, FL, USA.

[9] Ma X, Pilchak A, Martin P, Li M, Li DY, Allison J E. Crystal Plasticity Modeling and Validation of Extrusion Texture and Plasticity in a Near-alpha Titanium Alloy. TMS Anual Conference, 2014, San Diego, CA, USA. (大會(huì)特邀主題報(bào)告,賀Jim Williams院士, Mike Loretto和Rod Boyer鈦合金研究終身卓越成就)

[8] Ma X, Pilchak A, Li M, Li DY, Martin P, Allison J E. The influence of microstructure on the plasticity behavior of Ti6242S alloy: Crystal plasticity modeling and experimental characterization. MS&T Anual Conference, 2012, Pittsburg, PA, USA.

[7] Ma X, Allison J E. Studies of the plastic deformation behavior in titanium alloys based on crystallographic modeling. 1st World Congress on Integrated Computational Materials Engineering, 2011, Seven Spring, PA, USA.

[6] Ma X, Duan Z, Shi HJ. On the cyclic plastic behavior of recrystallized nickel-based directionally solidified superalloy by crystal plasticity modeling. 1st World Congress on Integrated Computational Materials Engineering, 2011, Seven Spring, PA, USA.

[5] Ma X, Shi HJ, Gu JL, Chen GF, Oliver L, Harald H. In-situ observations of the effects of orientation and carbide on low cycle fatigue crack propagation in a single crystal superalloy. International Fatigue Congress, 2010, Prague, Czech.

[4] Ma X, Duan Z, Shi HJ, Murai R, Yanagisawa E. Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to very high cycle regime. The International Conference on Mechanical Properties of Materials, 2010, Hangzhou, China.

[3] Duan Z, Shi HJ, Ma X. Load Frequency Effect on Gigacycle Fatigue Properties of Superalloy Inconel 718. The 2nd International Conference on Computer Engineering and Technology, 2010, Chengdu, China.

[2] Ma X, Shi HJ, Gu JL, et. al. Effect of Temperature on the Low Cycle Fatigue Properties of a Nickel-Base Single Crystal Superalloy. The Eighth International Conference on Fundamentals of Fracture (ICFF VIII), 2008, Hong Kong & Guangzhou, China.

[1] Shi HJ, Ma X, Jia DW, et. al. The analysis on the low cycle fatigue behavior of a directionally solidified superalloy with recrystallized surface layers. The 1st International Conference on Advances in Product Development and Reliability, 2008, Chengdu, China. (大會(huì)特邀主題報(bào)告


學(xué)術(shù)合作

與國(guó)內(nèi)外多個(gè)核工程、力學(xué)研究單位保持緊密學(xué)術(shù)合作與交流,包括不限于:

-清華大學(xué)力學(xué)系、工物系、核研院

-美國(guó)密西根大學(xué)核工系、材料系

-法國(guó)原子能委員會(huì)(CEA)、法國(guó)Grenoble理工大學(xué)

-美國(guó)康涅狄格大學(xué)機(jī)械系

-英國(guó)Bristol大學(xué)、英國(guó)牛津大學(xué)、帝國(guó)理工大學(xué)

-加拿大多倫多大學(xué)

-中國(guó)核動(dòng)力院、中廣核研究院、原子能院

-中科院力學(xué)所、近物所、應(yīng)物所