王來順副教授
辦公電話:18575626480
電子郵箱:wanglaish@mail.sysu.edu.cn
研究領(lǐng)域:熱工水力實驗和計算、沸騰傳熱及CHF、反應(yīng)堆嚴重事故、鉛鉍堆、小型壓水堆、CFD計算、新型燃料包殼傳熱及力學(xué)特性
一、基本信息
聯(lián)系郵箱:wanglaish@mail.sysu.edu.cn
學(xué)科方向:核反應(yīng)堆熱工水力與安全
研究領(lǐng)域:熱工水力實驗和計算、沸騰傳熱及CHF、反應(yīng)堆嚴重事故、鉛鉍堆、小型壓水堆、CFD計算、新型燃料包殼傳熱及力學(xué)特性
研究團隊長年招收博士后、博士生、碩士生,歡迎聯(lián)系
二、學(xué)習(xí)經(jīng)歷
2014.10-2017.09:東京大學(xué)原子力專攻 博士 導(dǎo)師:Koji Okamoto 教授
2011.09-2014.06:西安交通大學(xué)能源與動力工程學(xué)院,核能科學(xué)與工程專業(yè) 碩士 導(dǎo)師:蘇光輝教授
2007.09-2011.06:武漢理工大學(xué)能源與動力工程學(xué)院,能源動力系統(tǒng)及自動化專業(yè) 學(xué)士
三、科研經(jīng)歷
2022.02 中山大學(xué)中法核工程與技術(shù)學(xué)院 副教授
2018.04-2022.02:中山大學(xué)中法核工程與技術(shù)學(xué)院 特聘副研究員,博士后(廣東省海外博士后引進計劃)
2017.10-2018.02:東京大學(xué)原子力專攻 特任研究員
四、主要科研項目
[1] 國家自然科學(xué)基金,基于RISA效應(yīng)的混合潤濕性表面強化沸騰傳熱機制研究,負責(zé)人
[2] 中廣核研究院,冷棒臨界影響原因XX計算分析,負責(zé)人
[3] GF橫向項目,XX內(nèi)納米流體單相對流及沸騰換熱特性及機理實驗研究,負責(zé)人。
[4] 廣東省區(qū)域聯(lián)合基金,反應(yīng)堆壓力容器下封頭外表面氧化對IVR策略CHF影響和機理研究,負責(zé)人。
[5] GFJG項目,XX增強XX通道沸騰傳熱實驗及機理研究,負責(zé)人。
[6] 日本文部科學(xué)省,革新的な伝熱面構(gòu)造制御による大型 PWR の IVR 確立(采用革新性傳熱面結(jié)構(gòu)實現(xiàn)大型PWR的IVR策略),已結(jié)題,主要參與。
此外,在多個在研實驗項目中擔(dān)任科研骨干。
五、主要學(xué)術(shù)論文 (已發(fā)表高水平論文二十余篇,包含一區(qū)Top期刊4篇)
[1] Laishun Wang, Weijie Ye, Xiaoqiang He, et al. Experimental study on the CHF enhancement effect of nanofluids on the oxidized low carbon steel surface[J]. Applied Thermal Engineering, 2021: 117968.
[2] Laishun Wang,Binghuo Yan. Scaling analysis of the hydraulic behavior in reactor pressure vessel[J]. Annals of Nuclear Energy (0306-4549), 2021, 164: 108636.
[3] Laishun Wang,Binghuo Yan. Scaling analysis of the thermal hydraulic behavior in the secondary side of steam generator[J]. Annals of Nuclear Energy (0306-4549), 2021, 164: 108609.
[4] Baojie Nie, Sheng Fang, Man Jiang, Laishun Wang, et al. Anthropogenic tritium: Inventory, discharge, environmental behavior and health effects[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110188.
[5] Laishun Wang, Yuan Yuan, Nejdet Erkan et al. Effect of metal honeycomb structure on enhancing CHF in saturated downward-facing flow boiling, International Journal of Heat and Mass Transfer (0017-9310), 2020, 119244.
[6] Laishun Wang, Kai Wang, Nejdet Erkan, et al. Metal material surface wettability increase induced by electron beam irradiation[J](short communication). Applied Surface Science (0169-4332), 2020, 511: 145555.
[7] Laishun Wang, Yuan Yuan, et al. Influence of surface wettability increase induced by Gamma-ray irradiation on critical heat flux in downward- facing flow boiling[J]. Annals of Nuclear Energy (0306-4549), 2020, 142: 107420.
[8] Kai Wang, Haiguang Gong, Laishun Wang,et al. Effects of a porous honeycomb structure on critical heat flux in downward-facing saturated pool boiling [J]. Applied Thermal Engineering, 2020, 170: 115036.
[9] Laishun Wang, Nejdet Erkan, Haiguang Gong, Koji Okamoto. Electron beam irradiation effect on critical heat flux in downward-facing flow boiling [J]. International Journal of Heat and Mass Transfer, 2018, 120: 300-304.
[10] Haiguang Gong, Laishun Wang*, Abdul R. Khan, Nejdet Erkan, Koji Okamoto. Effects of downward-facing surface type and inclination on critical heat flux during pool boiling. Annals of Nuclear Energy, 2018, 113:344-352.
[11] Kai Wang, Nejdet Erkan, Haiguang Gong*, Laishun Wang, Koji Okamoto. Comparison of pool boiling CHF of a polished copper block and carbon steel block on a declined slope[J]. Journal of Nuclear Science and Technology, 2018, 55(9): 1065-1078. [中科院大類三區(qū)期刊,IF:1.25]
[12] Laishun Wang, Abdul R. Khan, Nejdet Erkan, Haiguang Gong, Koji Okamoto. Critical heat flux enhancement on a downward face using porous honeycomb plate in saturated flow boiling [J]. International Journal of Heat and Mass Transfer, 2017, 109: 454-461.
[13] Haiguang Gong, Abdul R. Khan, Nejdet Erkan, Laishun Wang, Koji Okamoto. Critical heat flux enhancement in downward-facing pool boiling with radiation induced surface activation effect [J]. International Journal of Heat and Mass Transfer, 2017, 109: 93-102.














中法核工程與技術(shù)學(xué)院
中法核工程與技術(shù)學(xué)院